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Abstract

In this paper some geometrical aspects of constrained mechanics are studied. A symplectic
setting for vakonomic mechanics is given, and the conservation of the energy is discussed. This
formulation needs constraint forces involving accelerations. A reduction procedure is given for
Čaplygin vakonomic systems. Finally, a unified geometrical framework for non-holonomic and
vakonomic mechanics is described. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Non-holonomic mechanics have gained much attention in the last years. Indeed, there are
many efforts to put it in the stream of the so-called geometric mechanics (see for instance
[1,3–9,12–18,20–24,27–34] and references therein).

A non-holonomic mechanical system consists of a Lagrangian functionL defined on
the space of velocitiesTQ of a configuration manifoldQ subjected to constraints given
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by a submanifoldM of TQ. If a compatibility condition is assumed one can obtain the
constrained dynamics by projecting the unconstrained one.

A different approach to constrained mechanics is the so-called vakonomic mechanics
studied by Kosloz [19] (see also [2,27]). In contrast with non-holonomic mechanics, vako-
nomic mechanics comes from a variational principle. Roughly speaking, in non-holonomic
mechanics one consider extremals for the action which are compatible with the constraints;
on the other hand, in vakonomic mechanics one looks for extremals in the class of curves
which satisfy the constraints. Both mechanics lead to different equations of motion, and the
solutions coincide if the constraints are holonomic.

Our purpose in this paper is to describe a geometrical (symplectic) setting for vako-
nomic mechanics. We first discuss in Section 2 some aspects of the above variational issues
concerning unconstrained, non-holonomic and vakonomic mechanics. Our discussion is in-
spired in that by Lewis and Murray [27], but we deal with non-linear constraints. The main
conclusion is that the action is always the same, but the allowable virtual displacements are
different according to the cases. In Section 3, we recall the symplectic formalism for uncon-
strained mechanics, and in Section 4, we develop a symplectic setting for non-holonomic
mechanics. Apart from the Lagrangian forces we have the reaction forces due to the con-
straints, which are understood here as a suitable 1-form taking values in the sometimes
called Chetaev bundleS∗(TM0), whereS is the vertical endomorphism onTQ. As we said
before, the compatibility condition allows us to obtain the constrained dynamics in an in-
trinsic way. Moreover, if the constraint submanifoldM is homogeneous, then the energy
is a conserved quantity. The main results are contained in Sections 5 and 6. In Section
5 we construct a geometrical framework for vakonomic mechanics. The bundle of forces
acting on the system is given by the space of semibasic 1-formsλiδ8i + dT (λi)S∗(d8i),
whereδ is the Euler–Lagrange operator [35],8i a family of independent constraints, dT

the total derivative with respect to time, andλi are arbitrary functions onTQ. Therefore, the
forces involve accelerations. In fact, they are 1-forms defined along the canonical projection
τ21 : T 2Q → TQ of the second or der tangent bundleT 2Q ontoTQ alongM. Even if the
compatibility condition is assumed, the existence of a solution onM is not guaranteed.
Indeed, a vakonomic system is equivalent to a pre-symplectic one (see [2,10]). A solution,
if exists, is necessarily a SODE, and in fact it is a vector field along the canonical projec-
tion τ21 : T 2Q → TQ. Moreover, we prove that the energy is a conserved quantity if and
only if the work performed for any “non-holonomic” reaction forceµiS∗(d8i) is constant
along the motions. In Section 6 we discuss an example (a skate on an inclined plane) in
order to clarify the ideas and results contained in this paper. A unified symplectic setting is
proposed in Section 7. Finally, in Section 8 we develop a reduction procedure forČaplygin
vakonomic systems, and apply it to reduce the vakonomic equations of motion of the rolling
disk.

2. Some remarks on variational principles in mechanics

Let Q be a configurationn-dimensional manifold, andL : TQ → R an autonomous
Lagrangian function. If(qA) are coordinates onQ, we denote by(qA, q̇A) the fibred coor-
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dinates onTQ. Then the tangent bundle projectionτQ : TQ → Q reads asτQ(qA, q̇A) =
(qA).

We will denote byS = dqA ⊗ (∂/∂q̇A) the canonical vertical endomorphism onTQ, and
by 1 = q̇A(∂/∂q̇A) the Liouville vector field ofTQ (see [26] for the intrinsic definitions).
In what follows,S∗ denotes the adjoint operator defined byS∗(α) = α ◦ S, for any 1-form
α onTQ.

If f is a function on the tangent bundle of orderk of Q, i.e.,f : T kQ → R, we denote
by dT f the total derivative off which is a function on the tangent bundleT k+1Q of order
k + 1 of Q; dT f is locally defined by

dT f = q̇A ∂f

∂qA
+ q̈A ∂f

∂q̇A
+ · · · + q(k+1)A ∂f

∂q(k)A
,

where(qA, q̇A, . . . , q(r)A) stand for the induced coordinates on the tangent bundle of order
r (see [25,35] for more details). The operator dT can be extended to differential forms in a
very natural way by requiring that dT d = d dT .

The operator dT was used by Tulczyjew [35] to define the Lagrange differential

δ(9) = d9 − dT (S∗(d9))

for all function9 ∈ C∞(TQ). In local coordinates we have

δ(9) =
(

∂9

∂qA
− dT

(
∂9

∂q̇A

))
dqA,

which is a 1-form onT 2Q.
Given two pointsx, y ∈ Q we define the manifold of twice piecewise differentiable

curves which connectx andy as

C2(x, y) = {c : [0, 1] → Q|c is C2, c(0) = x, and c(1) = y}.
Let c be a curve inC2(x, y). As is well known the tangent space ofC2(x, y) atc is given by

TcC
2(x, y) = {X : [0, 1] → TQ| X is C1, X(t) ∈ Tc(t)Q,

X(0) = 0, and X(1) = 0}.
We assume thatL is subjected to constraints given by a submanifoldM of TQ. M is

locally defined as the zero set ofm functions{81, . . . , 8m}, wherem is the codimension
of M in TQ. The bundle of Chetaev or constraint forces isS∗((TM)0) (see [14,21]), where
(TM)0 denotes the annihilator of the tangent bundleTM. Notice that the Chetaev bundle is
only defined alongM. The Chetaev bundle is locally generated by the semibasic 1-forms

S∗(d8i) = ∂8i

∂q̇A
dqA, 1 ≤ i ≤ m.

It is tacitly assumed that the 1-formsS∗(d8i) are indeed linearly independent. Therefore,
an arbitrary constraint force is a linear combination of them:λi(∂8i/∂q̇A) dqA, which will
be referred to as a non-holonomic force.
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Now, we introduce the submanifold ofC2(x, y) which consists of those curves which are
compatible with the constraint submanifoldM

C̃2(x, y) = {c̃ ∈ C2(x, y)|˙̃c(t) ∈ M ∀t ∈ [0, 1]}.
Given a curvẽc ∈ C̃2(x, y), the constraints allow us to consider a special vector subspace
of Tc̃C

2(x, y)

Vc̃ = {X ∈ Tc̃C
2(x, y)|S∗(d8i)(X̄) = 0 ∀i,

for all vector fieldsX̄ onTQalong˙̃c such thatT τQ(X̄) = X}. Therefore, ifX = XA(∂/∂qA)

we deduce thatX ∈ Vc̃ if and only if

XA ∂8i

∂q̇A
= 0 ∀i (1)

along the curvẽc.
Next, we will describe the tangent space toC̃2(x, y) at a curvẽc. If X̃ ∈ Tc̃C̃

2(x, y), then
there exists a family of curves̃cs(t) in C̃2(x, y) passing through̃c (say,c̃0 = c̃) such that

X̃(t) = dc̃s (t)

ds

∣∣∣∣
s=0

. (2)

In local coordinates we havẽcs(t) = (qA(t, s)), and (2) becomes

XA = ∂qA(t, s)

∂s

∣∣∣∣
s=0

, (3)

whereX̃ = XA(∂/∂qA). But the curveṡ̃cs(t) lie in M, so that

8i

(
qA(t, s),

∂qA(t, s)

∂t

)
= 0, (4)

and differentiating with respect tos we obtain

∂qA(t, s)

∂s

∂8i

∂qA
+ ∂q̇A(t, s)

∂s

∂8i

∂q̇A
= 0, (5)

where the dot means derivative with respect tot . From (3) and (5) we deduce thatX̃ has to
satisfy the following equation:

XA ∂8i

∂qA
+ (dT XA)

∂8i

∂q̇A
= 0 ∀i (6)

along the curvẽc. Notice that in fact the derivative dT is meaningful along a curve.
We define the functionalJ by

J : C2(x, y) → R,

c 7→
∫ 1

0
L(ċ(t)) dt.
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If c ∈ C2(x, y) andX ∈ TcC2(x, y), a direct computation using integration by parts
shows that (see [27])

dJ (c)(X) =
∫ 1

0

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt.

2.1. Unconstrained systems

In this case,M = TQ, and thenS∗((TM)0) = 0. The Hamilton principle states that a
curvec ∈ C2(x, y) is a motion of the Lagrangian system defined byL if and only if c is a
critical point ofJ , i.e., dJ (c)(X) = 0 for all X ∈ TcC2(x, y) which in turn is equivalent
to the condition∫ 1

0

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt = 0

for all values ofXA. Therefore, we have∫ 1

0

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
fXA dt = 0

for all functionsf defined alongc. In particular, we can take

f =
(

∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA,

and we deduce that(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA = 0

for all XA. The converse is obvious. Hence,c satisfies dJ (c)(X) = 0 for allX ∈ TcC2(x, y)

if and only if we have

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0, 1 ≤ A ≤ n,

i.e.,c satisfies the Euler–Lagrange equations.

2.2. Non-holonomic mechanics

The Hölder principle [2] states that a curvec̃ ∈ C̃2(x, y) is a motion if and only if it
satisfies dJ (c̃)(X) = 0 for all X ∈ Vc̃, i.e.,∫ 1

0

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt = 0

for all XA satisfying Eq. (1). Since Eq. (1) is linear, we deduce that∫ 1

0

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
fXA dt = 0
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for all functionsf alongc̃. As above, if we take

f =
(

∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA,

we deduce that̃c is a motion if and only if(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA = 0 (7)

for all XA satisfying Eq. (1), which is just the statement of D’Alembert’s principle. If we
denote byF0

nh the annihilator of the space

Fnh = 〈XA | XA satisfies(1)〉,
then it is locally generated by the constraint forces, say

F0
nh = 〈S∗(d8i)〉.

Therefore, the 1-formδ(L) = ((∂L/∂qA) − (d/dt)(∂L/∂q̇A)) dqA is inF0
nh, i.e.,

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= −λi ∂8i

∂q̇A
, 1 ≤ A ≤ n, (8)

for some Lagrange multipliersλ1, . . . , λm. Conversely, ifδ(L) ∈ F0
nh alongc̃, thenc̃ is a

motion for the non-holonomic problem.
Next, we will discuss the principle of virtual work.
Principle of virtual workThe work done by the forces of constraint is zero on motions

allowed by the constraints.
This statement cannot be derived from the non-holonomic equations of motion. In-

deed, the principle of virtual work states that the work performed by the constraint force
(λi(∂8i/∂q̇A)) dqA (which is obtained after the determination of the Lagrange multipliers)
is zero, i.e.,

λi ∂8i

∂q̇A
q̇A = 0.

Therefore, if the Liouville vector field1 is tangent to the constraint submanifold, i.e.,
1|M ∈ TM, our system will satisfy the principle of virtual work. When1 is tangent toM we
will say that the constraints are homogeneous. Clearly, a linear constraint is homogeneous.

2.3. Vakonomic mechanics

In vakonomic mechanics, a motion is a curvec̃ ∈ C̃2(x, y) such that dJ (c̃)(X̃) = 0
for all X̃ ∈ Tc̃C̃

2(x, y). Using the Lagrange multipliers theorem in an infinite dimensional
context we deduce (see [2,27]) thatc̃ is a motion if and only if there existm functions
λ1, . . . , λm such that

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= −λi

(
d

dt

(
∂8i

∂q̇A

)
− ∂8i

∂qA

)
− dλi

dt

∂8i

∂q̇A
, 1 ≤ A ≤ n. (9)
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Indeed, we have to use the natural pairing

(α, X̃) 7→
∫ 1

0
〈α, X̃〉 dt,

whereα is a 1-form onT 2Q alongτ21 : T 2Q → TQ andX̃ ∈ Tc̃C̃
2(x, y).

It should be noticed that Eq. (9) can be written as

(δL)A = −λi(δ8i)A + (dT λi)
∂8i

∂q̇A
, 1 ≤ A ≤ n. (10)

An alternative approach to vakonomic mechanics is the following. We can prove that a
curvec̃ = (qA(t)) in C̃2(x, y) is a solution of the vakonomic equations if and only if there
exist local functionsλ1, . . . , λm on TQ such that̄c(t) = (qA(t), λi(t)) is an extremal for
the extended Lagrangian

L = L + λi8i,

i.e., it satisfies the Euler–Lagrange equations

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0, 1 ≤ A ≤ n

(see [2,27] for details).

3. Unconstrained mechanics: a geometrical approach

Let us recall the symplectic formulation for unconstrained mechanics (see [26]).
UsingS and1 we construct the Poincaré–Cartan 1-formαL = S∗(dL), the Poincaré–

Cartan 2-formωL = −dαL, and the energy functionEL = 1(L) − L associated withL.
As we know,ωL is symplectic if and only ifL is regular. In such a case, the symplectic
geometry allows us to derive the equations of motion in a geometrical way. Indeed, the
equation

iXωL = dEL (11)

has a unique solution0L, which is the Hamiltonian vector fieldXEL
; 0L is usually called

the Euler–Lagrange vector field. Denote by[L : T (TQ) → T ∗(TQ) and]L : T ∗(TQ) →
T (TQ) the musical isomorphisms defined byωL, i.e., [L(Y ) = iY ωL, and]L = [−1

L . In
local coordinates we have

[L

(
∂

∂qA

)
=
(

∂p̂A

∂qB
− ∂p̂B

∂qA

)
dqB + ∂p̂A

∂q̇B
dq̇B,

[L

(
∂

∂q̇A

)
= −∂p̂B

∂q̇A
dqB,

wherep̂A = (∂L/∂q̇A), 1 ≤ A ≤ n, are the generalized momenta.
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Therefore,0L is a second order differential equation (SODE, for short), i.e.,S(0L) = 1.
So, we have

0L = q̇A ∂

∂qA
+ ξA(q, q̇)

∂

∂q̇A
,

which implies that the solutions of0L (i.e., the projections of its integral curves ontoQ)
are the solutions of the Euler–Lagrange equations

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0, 1 ≤ A ≤ n.

If we contract Eq. (11) by0L we have

0 = 0L(EL),

which proves that the energy is a conserved quantity.

4. Non-holonomic mechanics: a geometrical approach

Assume thatL is subjected to a constraint submanifoldM of TQ locally defined by the
equations8i(q

A, q̇A) = 0, 1 ≤ i ≤ m. We denote byFnh the vector bundle overM
defined by prescribing its annihilator beS∗((TM)0), i.e., F 0

nh = S∗((TM)0). Notice that
[L(F⊥

nh) = F 0
nh, where⊥ is used to denote the complement with respect to the symplectic

form ωL.
Consider the following set of equations:

iXωL − dEL ∈ F 0
nh, X ∈ TM. (12)

Henceforth, we will assume that the following conditions are fulfilled (see [36,37]):
1. codimM = rankF 0

nh (admissibility condition),
2. TM ∩ F⊥

nh = 0 (compatibility condition).
The admissibility condition simply states that the 1-forms{S∗(d8i)} are linearly indepen-
dent (see Section 2). The meaning of the compatibility condition will become clear below.

If X is a solution of Eq. (12) then it is a SODE. Moreover, ifc(t) = (qA(t)) is a solution
of X we have that it satisfies the non-holonomic equations (8). Thus, Eq. (12) are the
geometrical version of (8).

A solution of Eq. (12) will be of the formX = 0L + λiZi , whereZi = ]L(S∗(d8i)).
In order to determine the Lagrange multipliersλi we need to use the tangency condition
X(8i) = 0, for all i. Thus, we get

0 = X(8j ) = 0L(8j ) + λiZi(8j ).

Therefore, we obtain a system of linear equations. If the matrix(Zi(8j )) is regular the
system has a unique solution. This happens, for instance, if the Hessian matrix ofL is
positive or negative definite (see [21,24]).
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If (Zi(8j )) is regular then we have

λi = −C ji0L(8j ), (13)

where(C ij ) is the inverse matrix of(Zi(8j )). In [21,24] it was proved that the regularity of
these local matrices is equivalent to the compatibility condition. By a simple counting of
dimensions we obtain a Withney sum decomposition

T (TQ)|M = TM ⊕ F⊥
nh

with complementary projectorsP : T (TQ)|M → TM andQ : T (TQ)|M → F⊥
nh such that

0L,M = P(0L) is the constrained dynamics (see [7,21,23,24]). We explicitly obtain

0L,M = P(0L) = 0L − C ij0L(8j )Zi. (14)

Remark 4.1. If L is a Lagrangian of mechanical type, sayL = T − V , where T is the
kinetic energy derived from a Riemannian metric on Q and V is a potential energy, then L
is always compatible with any constraint submanifold.

Remark 4.2. It should be noted that the determination of the Lagrange multipliers im-
plies the knowledge of the dynamics as well as the knowledge of the constraint force
λi(∂8i/∂q̇A) dqA.

Assume that the non-holonomic system(L, M) is compatible and let0L,M be the solution
of the equations of motion (12). If we contract the first equation in Eq. (12) by0L,M , we
obtain

0L,M(EL) = λi ∂8i

∂q̇A
q̇A,

since0L,M is a SODE. Therefore, we have the following result.

Theorem 4.3. If the constraint submanifold M is homogeneous then the energy is
conserved.

5. Vakonomic mechanics: a geometrical approach

In this section we consider the vakonomic case.
Consider the projection(τ21)|τ−1

21 (M)
: τ−1

21 (M) → M, whereτ21 : T 2Q → TQ is the

canonical bundle projection. We denote byFvk the real vector space defined by prescribing
its annihilator consists of the 1-forms

{λiαi + (dT λi)S∗(d8i) | λ1, . . . , λm ∈ C∞(TQ)},
where

αi = dT (S∗(d8i)) − d8i, 1 ≤ i ≤ m.
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In local coordinates we obtain

αi =
(

dT

(
∂8i

∂q̇A

)
− ∂8i

∂qA

)
dqA, S∗(d8i) = ∂8i

∂q̇A
dqA.

In fact,αi is just the 1-formαi = −δ8i onT 2Q.
The above local expressions show that the setFvk consists of semibasic 1-forms along

the canonical projection(τ21)|τ−1
21 (M)

: τ−1
21 (M) → M.

Notice thatFvk is a global object. Indeed, define an operator from 1-forms onTQ into
1-forms onT 2Q by

K = dT S∗ − τ ∗
21,

i.e., if α is a 1-form onTQ thenK(α) = dT (S∗(α)) − τ ∗
21α is a 1-form onT 2Q. Now, a

simple computation shows that

F 0
vk = K((TM)0).

Consider the following set of equations

iXωL − dEL ∈ F 0
vk, X ∈ TM. (15)

Let us say some words about the meaning of Eq. (15).X is a vector field alongτ21, i.e.,
X(z) ∈ Tτ21(z)(TQ), for anyz ∈ τ−1

21 (M). Thus,iXωL − dEL is a 1-form alongτ21.
If X is a solution of Eq. (15) then it is a SODE, since the elements inF 0

vk are semiba-
sic 1-forms. Moreover, ifc(t) = (qA(t)) is a solution ofX we have that it satisfies the
vakonomic equation (9). Thus, Eq. (15) are the geometrical version of (9).

Any solution of Eq. (15) will be of the formX = 0L + λiUi + (dT λi)Zi , whereUi =
]L(αi) andZi = ]L(S∗(d8i)). Now, using the tangency condition, we get

0 = X(8j ) = 0L(8j ) + λiUi(8j ) + (dT λi)Zi(8j ).

Let X be a solution of Eq. (15), hence it is a SODE. A curvec(t) = (qA(t)) in Q is a
solution ofX if and only if

dqA

dt
= q̇A,

d2qA

dt2
= XA

(
qB, q̇B, q̈B, λi,

dλi

dt

)
, (16)

whereX = q̇A(∂/∂qA) + XA(q, q̇, q̈, λi, λ̇i)(∂/∂q̇A). Eq. (16) are in general implicit
differential equations.

Now, assume that, as in the precedent section, the matrix(Zi(8j )) is regular. Then we
have

dT λi = −C jiUk(8j )λ
k − C ji0L(8j ), (17)

where(C ij ) is the inverse matrix of(Zi(8j )). As for non-holonomic mechanics, the geo-
metrical characterization of the regularity of the local matrices(Zi(8j )) is the condition

F⊥
nh ∩ TM = 0.
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Eq. (17) is a differential equation involving the Lagrange multipliers. We thus have to give
initial conditions for them in order to solve Eqs. (16) and (17). Note the difference with
respect to the non-holonomic case, in which one obtains the Lagrange multipliers by an
algebraic procedure.

Coming back to Eq. (16), if the associated non-holonomic system is compatible we can
implement them as follows:

dqA

dt
= q̇A,

d2qA

dt2
= XA

(
qB, q̇B, q̈B, λi,

dλi

dt

)
,

dλi

dt
= −C jiUk(8j )λ

k − C ji0L(8j ).

Assume thatX is a solution of Eq. (15). If we contract the first equation in Eq. (15) by
X we obtain

−X(EL) = λiαi(X) + (dT λi)S∗(d8i)(X).

Taking into account thatX is a SODE we have

−X(EL) = λi dT

(
∂8i

∂q̇A

)
q̇A − λi ∂8i

∂qA
q̇A + dT (λi)

∂8i

∂q̇A
q̇A

= λi dT

(
∂8i

∂q̇A

)
q̇A + λi ∂8i

∂q̇A
q̈A + dT (λi)

∂8i

∂q̇A
q̇A,

since

q̇A ∂8i

∂qA
+ q̈A ∂8i

∂q̇A
= 0.

Therefore, we deduce that

−X(EL) = dT

(
λi ∂8i

∂q̇A
q̇A

)
.

Then, we have proved the following result.

Theorem 5.1. The energy of the vakonomic system(M, L) is a conserved quantity if and
only if the work done by the “reaction non-holonomic forces”λi(∂8i/∂q̇A) dqA is a con-
stant of the motion.

Remark 5.2. We can compare with the result for non-holonomic mechanics. If the con-
straint submanifold M is homogeneous, then the energyEL is a conserved quantity for both
mechanical systems, say non-holonomic and vakonomic.

Therefore, the following could be considered as a principle of virtual work for vakonomic
mechanics:

Principle of virtual work for vakonomic mechanicsThe work done by any non-holonomic
force is constant along the motions allowed by the constraints.
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6. An example: a skate on an inclined plane

Consider a skate on an inclined plane5 with Cartesian coordinatesx, y. We assume that
they-axis is horizontal, while thex-axis is directed downward (see [2]). Denote by(x, y)

the coordinates of the point of contact of the skate with5, and letφ be the angle measured
from thex-axis. The Lagrangian function is

L = 1
2(ẋ2 + ẏ2 + φ̇2) + x

with an appropriate choice of unities. The system is also subjected to the constraint

8 = ẋ sinφ − ẏ cosφ.

A direct computation shows that

0L = ẋ
∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
+ ∂

∂ẋ
.

6.1. Non-holonomic equations of motion

From (13) we deduce thatλ = ẋφ̇ cosφ + ẏφ̇ sinφ + sinφ, and then (14) implies that

X = ẋ
∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
+ (1 − sinφ(φ̇(ẋ cosφ + ẏ sinφ) + sinφ))

∂

∂ẋ

+cosφ(φ̇(ẋ cosφ + ẏ sinφ) + sinφ)
∂

∂ẏ
.

In other words, a motion(x(t), y(t), φ(t)) satisfies the following system of second order
differential equations:

ẍ = 1 − sinφ(φ̇(ẋ cosφ + ẏ sinφ) + sinφ),

ÿ = cosφ(φ̇(ẋ cosφ + ẏ sinφ) + sinφ), φ̈ = 0,

which can be explicitly integrated (see [2]).

6.2. Vakonomic equations of motion

In this case, (17) yields

λ̇ = φ̇(ẋ cosφ + ẏ sinφ) + sinφ. (18)

Therefore, a solution has the following form:

X = ẋ
∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
+ (1 − λφ̇ cosφ − λ̇ sinφ)

∂

∂ẋ

+(−λφ̇ sinφ + λ̇ cosφ)
∂

∂ẏ
+ λ(ẋ cosφ + ẏ sinφ)

∂

∂φ̇
,

whereλ is given by (18).
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Hence, a motion(x(t), y(t), φ(t)) satisfies the following system of second order differ-
ential equations:

ẍ = 1 − λφ̇ cosφ − λ̇ sinφ, ÿ = −λφ̇ sinφ + λ̇ cosφ,

φ̈ = λ(ẋ cosφ + ẏ sinφ), λ̇ = φ̇(ẋ cosφ + ẏ sinφ) + sinφ.

Remark 6.1. Notice that in both cases the energy is conserved since the constraints are
linear in the velocities.

7. A unified geometrical approach

The purpose of this section is to describe a general geometrical setting which includes
non-holonomic and vakonomic mechanics as particular cases.

LetL : TQ → R be a regular Lagrangian function, andM a submanifold of codimension
m of TQ.

Let F̃ 0 be a set of semibasic 1-forms along the projection(τ21)|τ−1
21 (M)

: τ−1
21 (M) → M,

and denote bỹF its annihilator. In other words, for eachz ∈ T 2Q such thaty = τ21(z) ∈ M,
F̃z is a subset ofTy(TQ). Therefore, ifγ ∈ F̃ o, we haveγ = γA(qB, q̇B, q̈B) dqA.

Consider the following system of equations:

iXωL − dEL ∈ F̃ 0, X ∈ TM. (19)

One can imagine that the LagrangianL is subjected to the forces given bỹF 0 and some
constraints given byM.

A solutionX of Eq. (19), if it exists, has to be of the form

X = 0L + Y,

whereY = ]L(γ ), andγ ∈ F̃ 0. Now, we impose the second equation in Eq. (19) (the
tangency condition) and we get

0 = X(8j ) = 0L(8j ) + Y (8j ).

A direct computation shows that the solutions of a solutionX of Eq. (19) satisfy the following
equations of motion:

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= γA,

whereγ = γA dqA.
In order to recover the non-holonomic and vakonomic cases, we only need to take asF̃ 0

either the natural lift ofF 0
nh to T 2Q or F 0

vk.

8. Čaplygin vakonomic systems: reduction of the vakonomic equations

We will consider a Lagrangian function subjected to constraints given by a connection.
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Suppose thatQ is a principalG-bundle over a manifold̄Q with projectionρ : Q → Q̄,
and let0 be a principal connection inρ : Q → Q̄. The LagrangianL : TQ → R is
supposed to beG-invariant and in addition it is subjected to the constraints given by the
horizontal distributionH of 0, i.e., the allowable motions have to be horizontal curves with
respect to that connection. Thus, the constraint submanifoldM is just the total space of the
vector bundleH→ Q, with TQ = H⊕Vρ, whereVρ denotes the vertical subbundle with
respect to the projectionρ. We denote byh : TQ → H the horizontal projector. We will
assume that the resultant non-holonomic system is compatible in the sense of Section 4.

Take bundle coordinates(qA) = (qa, qi), 1 ≤ a ≤ n − m, 1 ≤ i ≤ m, n = dimQ. The
horizontal distribution is locally spanned by the local vector fields

Ha =
(

∂

∂qa

)H

= ∂

∂qa
− 0i

a(q
A)

∂

∂qi
,

whereY H stands for the horizontal lift toQ of a vector fieldY onQ̄, and0i
a = 0i

a(q
b, qj )

are the Christoffel components of0. Thus, we obtain a local basis of vector fields onQ{
Ha, Vi = ∂

∂qi

}
.

Its dual basis of 1-forms is

{ηa = dqa, ηi = 0i
a dqa + dqi},

and the constraints are

8i = 0i
aq̇

a + q̇i .

We deduce that

F 0
nh = span{ηi}, F 0

vk = {λiαi + dT (λi)ηi},
whereαi = (δ8i)A dqA. A direct computation shows that

αi =
[

dT (0i
a) − ∂0i

b

∂qa
q̇b

]
dqa − ∂0i

b

∂qj
q̇b dqj .

The curvature of0 is the tensor field of type (1,2) onQ given byR = 1
2[h, h]. Since

h
(

∂

∂qa

)
= ∂

∂qa
− 0i

a

∂

∂qi
, h

(
∂

∂qi

)
= 0,

we obtain

R

(
∂

∂qa
,

∂

∂qb

)
= Ri

ab
∂

∂qi
,

with

Ri
ab = ∂0i

a

∂qb
− ∂0i

b

∂qa
+ 0

j
a

∂0i
b

∂qj
− 0

j
b

∂0i
a

∂qj
.
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As we know,0 is flat if and only if the curvatureR identically vanishes and, in this case,
the constrained system is holonomic.

SinceL is G-invariant one can define a Lagrangian functionL∗ : T Q̄ → R given by

L∗(Y ) = L((YH )q)

for anyY ∈ Tq̄Q̄, whereq is an arbitrary point in the fiber over̄q. In local coordinates we
have

L∗(qa, q̇a) = L(qa, qi, q̇a, −0i
aq̇

a).

SinceL∗ does not depend onqi we deduce that

∂L

∂qi
= ∂L

∂q̇j

∂0
j
a

∂qi
q̇a. (20)

The vakonomic equations forL are the following:

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= −λi

(
d

dt
(0i

a) − ∂0i
b

∂qa
q̇b

)
− λ̇i0i

a,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λj ∂0

j
a

∂qi
q̇a − λ̇i .

After some calculations, and using (20) we obtain that

d

dt

(
∂L∗

∂q̇a

)
− ∂L∗

∂qa
= −

(
λi + ∂L

∂q̇i

)
q̇bRi

ab,

where the Lagrange multipliers satisfy Eq. (17).
The term(∂L/∂q̇i)q̇bRi

ab was intrinsically defined in [24] as follows. Define a 1-form
αL,0 onT Q̄ by putting

(αL,0)u(U) = −(αL)x(X̃)

for any U ∈ Tu(T Q̄), for anyu ∈ Tq̄Q̄, whereX̃ ∈ Tx(TQ) is a tangent vector which
projects onto the tangent vectorγu(U) = R((uH )q, (T τQ̄(U))Hq ) ∈ TqQ, ρ(q) = q̄, and
x ∈ M with τQ(x) = q. In local coordinates, we get

αL,0 =
(

∂L

∂q̇i
q̇bRi

ab

)
dqa.

Therefore,αL,0 encodes the curvature of the connection.
Let us now examine the termλiq̇bRi

ab. Using the same notations as above we have a
linear mapping

γu : Tu(T Q̄) → Vqρ,

whereVqρ denotes the vector subspace ofTqQ consisting of the vertical vectors with respect
to ρ. From now on we will assume that the Lie groupG is abelian. In this case, we have
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a natural identificationVqρ ∼= g which induces another one between the corresponding
dual spaces:V ∗

q ρ ∼= g∗. Therefore, the transpose mapping toγu can be understood as a

linear mappingγ ∗
u : g∗ → T ∗

u (T Q̄). Then we can define a real vector spaceF̃vk on T Q̄

by prescribing its annihilator to be Imγ ∗. A direct computation proves that̃F 0
vk is locally

generated by the 1-formsRi
abq̇

b dqa .
SinceG is abelian, we have that0i

a is G-invariant, from which deduce that all the
coefficients involved in Eq. (17) areG-invariant. Therefore, we could look forG-invariant
Lagrange multipliers. We also remark that ifλ is G-invariant then dT λ is so also, where
now the action ofG onT 2Q is the natural prolongation. Thus, one could consider a family
λ̄i of Lagrange multipliers satisfying the differential equation

dT λ̄i = −C̄ jiUk(8j )λ̄
k − C̄ ji0L(8j ), (21)

where the bar over a term means that we are considering its projection ontoT Q̄. Then the
lifts of λ̄i to TQ would satisfy Eq. (17). Conversely, eachG-invariant solution of Eq. (17)
projects onto a solution of Eq. (21).

Now, take a Lagrangian system with Lagrangian functionL and external forceαL,0.
Consider the following motion equation:

iY ωL∗ − dEL∗ − αL,0 ∈ F̃ 0
vk (22)

onT Q̄.
The above discussion can be summarized as follows.

Theorem 8.1. If G is abelian, then the vakonomičCaplygin system(L, 0) is equivalent to
the system defined by the LagrangianL∗ and external forceαL,0 + β, with β ∈ F̃ 0

vk, plus
the differential equation(21).This means that the solutions of both systems are related by
projection and lifting.

Indeed, ifY is a solution of Eq. (22) with Lagrange multipliersλ̄i then its horizontal lift
YH to TQ is a solution of Eq. (15) with Lagrange multipliersλi = λ̄i ◦ Tρ. Conversely, if
X is aG-invariant solution of Eq. (15) then its projectionTρ(X) is a solution of Eq. (22).

Remark 8.2. We have developed a reduction procedure which works as follows. First, we
solve Eq.(21)and obtain the Lagrange multipliers̄λi . Next, we solve the reduced dynamics
Y, and finally we lift Y to TQ by using the tangent connectionT 0 in the principal bundle
TQ → T Q̄ (see[11] for tangent prolongations of principal connections).

8.1. An example: the rolling disk

Consider a rolling disk of radiusR and massm constrained to remain vertical on a plane.
We introduce coordinates(x, y, θ1, θ2) in the configuration manifoldQ = R2 × S1 × S1,
wherex, y are the Cartesian coordinates of the center of mass,θ1 the angle between the
tangent of the disk at the point of contact and the axisx andθ2 is the angle given by a fixed
diameter and the vertical.
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The system is described by a Lagrangian

L = 1
2m(ẋ2 + ẏ2) + 1

2I1θ̇
2
1 + 1

2I2θ̇
2
2 ,

whereI1 andI2 are the moments of inertia, and the constraints

81 = ẋ − Rθ̇2 cosθ1, 82 = ẏ − Rθ̇2 sinθ1.

The vakonomic equations of motion are

mẍ = −λ̇1, mÿ = −λ̇2, I1θ̈1 = λ1θ̇2R sinθ1 − λ2θ̇2R cosθ1,

(I2 + mR2)θ̈2 = −λ1θ̇1R sinθ1 + λ2θ̇1R cosθ1,

with

λ̇1 = −R2mθ̇1 sinθ1 cosθ1

I2 + R2m
λ1 − R2mθ̇1 cos2 θ1

I2 + R2m
λ2 + Rmθ̇1θ̇2 sinθ1,

λ̇2 = −R2mθ̇1 sin2 θ1

I2 + R2m
λ1 + R2mθ̇1 sinθ1 cosθ1

I2 + R2m
λ2 − Rmθ̇1θ̇2 cosθ1.

Next, we will apply the reduction method discussed above.
R

2 × S1 × S1 is a principalR2-bundle overT2 = S1 × S1 with projectionρ : R2 ×
T

2 → T
2, ρ(x, y, θ1, θ2) = (θ1, θ2). A principal connection0 is defined by prescribing its

horizontal distribution to be given by

H0 = span{dx − R cosθ1 dθ2, dy − R sinθ1 dθ2}.

So(L, 0) is aČaplygin system.
The Christoffel components are

0x
1 = 0

y

1 = 0, 0x
2 = −R cosθ1, 0

y

2 = −R sinθ1

with the obvious notations. Therefore, the reduced Lagrangian is

L∗(θ1, θ2, θ̇1, θ̇2) = 1
2I1θ̇

2
1 + 1

2(I2 + mR2)θ̇2
2 .

Since the curvature of0 is given by

Rx
12 = −Rx

21 = −R sinθ1, R
y

12 = −R
y

21 = R cosθ1,

the other components being zero, we deduce thatαL,0 identically vanishes.
A long but straightforward computation shows that the reduced vakonomic equations of

motion are

I1θ̈1 = λ̄1θ̇2R sinθ1 − λ̄2θ̇2R cosθ1,

(I2 + mR2)θ̈2 = −λ̄1θ̇1R sinθ1 + λ̄2θ̇1R cosθ1,

with
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˙̄λ1 = −R2mθ̇1 sinθ1 cosθ1

I2 + R2m
λ̄1 − R2mθ̇1 cos2 θ1

I2 + R2m
λ̄2 + Rmθ̇1θ̇2 sinθ1,

˙̄λ2 = −R2mθ̇1 sin2 θ1

I2 + R2m
λ̄1 + R2mθ̇1 sinθ1 cosθ1

I2 + R2m
λ̄2 − Rmθ̇1θ̇2 cosθ1.
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