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Abstract

In this paper some geometrical aspects of constrained mechanics are studied. A symplectic
setting for vakonomic mechanics is given, and the conservation of the energy is discussed. This
formulation needs constraint forces involving accelerations. A reduction procedure is given for
Caplygin vakonomic systems. Finally, a unified geometrical framework for non-holonomic and
vakonomic mechanics is described. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Non-holonomic mechanics have gained much attention in the last years. Indeed, there are
many efforts to put it in the stream of the so-called geometric mechanics (see for instance
[1,3-9,12-18,20-24,27-34] and references therein).

A non-holonomic mechanical system consists of a Lagrangian funétidefined on
the space of velocitieQ of a configuration manifold) subjected to constraints given
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by a submanifold of TQ. If a compatibility condition is assumed one can obtain the
constrained dynamics by projecting the unconstrained one.

A different approach to constrained mechanics is the so-called vakonomic mechanics
studied by Kosloz [19] (see also [2,27]). In contrast with non-holonomic mechanics, vako-
nomic mechanics comes from a variational principle. Roughly speaking, in non-holonomic
mechanics one consider extremals for the action which are compatible with the constraints;
on the other hand, in vakonomic mechanics one looks for extremals in the class of curves
which satisfy the constraints. Both mechanics lead to different equations of motion, and the
solutions coincide if the constraints are holonomic.

Our purpose in this paper is to describe a geometrical (symplectic) setting for vako-
nomic mechanics. We first discuss in Section 2 some aspects of the above variational issues
concerning unconstrained, non-holonomic and vakonomic mechanics. Our discussion is in-
spired in that by Lewis and Murray [27], but we deal with non-linear constraints. The main
conclusion is that the action is always the same, but the allowable virtual displacements are
different according to the cases. In Section 3, we recall the symplectic formalism for uncon-
strained mechanics, and in Section 4, we develop a symplectic setting for non-holonomic
mechanics. Apart from the Lagrangian forces we have the reaction forces due to the con-
straints, which are understood here as a suitable 1-form taking values in the sometimes
called Chetaev bundl&*(TM?), wheres is the vertical endomorphism &rQ. As we said
before, the compatibility condition allows us to obtain the constrained dynamics in an in-
trinsic way. Moreover, if the constraint submanifdldl is homogeneous, then the energy
is a conserved quantity. The main results are contained in Sections 5 and 6. In Section
5 we construct a geometrical framework for vakonomic mechanics. The bundle of forces
acting on the system is given by the space of semibasic 1-fatéds; + dr (A1) S*(d®;),
wheres is the Euler-Lagrange operator [34}; a family of independent constraintsy d
the total derivative with respect to time, akidare arbitrary functions ofiQ. Therefore, the
forces involve accelerations. In fact, they are 1-forms defined along the canonical projection
101 : T2Q — TQof the second or der tangent bundi@Q onto TQ alongM. Even if the
compatibility condition is assumed, the existence of a solutioois not guaranteed.
Indeed, a vakonomic system is equivalent to a pre-symplectic one (see [2,10]). A solution,
if exists, is necessarily a SODE, and in fact it is a vector field along the canonical projec-
tion 721 : T2Q — TQ. Moreover, we prove that the energy is a conserved quantity if and
only if the work performed for any “non-holonomic” reaction forges* (d®;) is constant
along the motions. In Section 6 we discuss an example (a skate on an inclined plane) in
order to clarify the ideas and results contained in this paper. A unified symplectic setting is
proposed in Section 7. Finally, in Section 8 we develop a reduction procedu@aygin
vakonomic systems, and apply it to reduce the vakonomic equations of motion of the rolling
disk.

2. Some remarks on variational principles in mechanics

Let QO be a configuratiom-dimensional manifold, and : TQ — R an autonomous
Lagrangian function. Ifg4) are coordinates o@, we denote byg4, §4) the fibred coor-
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dinates oriTQ. Then the tangent bundle projectiop : TQ — Q reads aso (g, gt =
g™).

We will denote byS = dg4 ® (3/8¢) the canonical vertical endomorphism @, and
by A = ¢4(3/3¢*) the Liouville vector field ofTQ (see [26] for the intrinsic definitions).
In what follows,S* denotes the adjoint operator defined$iy«) = « o S, for any 1-form
aonTQ.

If £ is a function on the tangent bundle of ordenf Q, i.e., f : T*Q — R, we denote
by dr f the total derivative off which is a function on the tangent bundiét1Q of order
k + 1 of Q; dr f is locally defined by

A Of L4 df of

— A=l A 4 k+DHA_7J

Urf =q"5 5 +i' g+ +a PPIGES

where(g4, ¢4, ... , ¢™4) stand for the induced coordinates on the tangent bundle of order

r (see [25,35] for more details). The operatgrahn be extended to differential forms in a
very natural way by requiring that-dd = d dy.
The operator @ was used by Tulczyjew [35] to define the Lagrange differential

S(W) = dW — dr (S*(dW))

for all functionW¥ € C°°(TQ). In local coordinates we have

(3% g (V) g
‘“‘I’)—(an dT(ac‘zA)) %"

which is a 1-form o2 Q.
Given two pointsx, y € Q we define the manifold of twice piecewise differentiable
curves which conneat andy as

C%(x,y) ={c:[0,1] > Q|c is C?, ¢(0) =x, and c(1) = y}.
Letc be a curve ir€2(x, y). As is well known the tangent space@(x, y) atc is given by
T.C2%(x,y)={X :[0,1] - TQ| X is CL, X (1) € To(1, 0,
X(0)=0, and X(1) = 0}.
We assume thak is subjected to constraints given by a submanifddof TQ. M is
locally defined as the zero setmffunctions{®y, ..., ®,}, wherem is the codimension
of M in TQ. The bundle of Chetaev or constraint forcesig(TM)?) (see [14,21]), where

(TM)° denotes the annihilator of the tangent buriiild. Notice that the Chetaev bundle is
only defined along. The Chetaev bundle is locally generated by the semibasic 1-forms

09;
S*(dd;) = —dg?, 1<i<m.
g4
It is tacitly assumed that the 1-forn§&(d®;) are indeed linearly independent. Therefore,

an arbitrary constraint force is a linear combination of thett ®; /dg4) dg*, which will
be referred to as a non-holonomic force.
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Now, we introduce the submanifold 6% (x, y) which consists of those curves which are
compatible with the constraint submanifald

C%(x,y) = {¢ € C%(x, y)|c(t) € M ¥t € [0, 1]}.

Given a curve® € C2(x, y), the constraints allow us to consider a special vector subspace
of T:C2(x, y)

V: = (X € T:C%(x, y)|S*(dd;)(X) = 0 Vi,

for all vector fieldsX onTQalonge such thaf" o (X) = X}. Therefore, it = X4(3/3¢*)
we deduce thaX < V: if and only if
0d;
XA =0 Vi 1)
9g4
along the curvé. ) i
Next, we will describe the tangent spac&€fax, y) ata curve. If X € T:C?%(x, y), then
there exists a family of curves (r) in C2(x, y) passing through (say,éo = ¢) such that

- dc;s (1)
X(@) = d . 2
S |s=0
In local coordinates we havg(r) = (¢“(z, 5)), and (2) becomes
A
XA aqg(t,s) ’ 3)
ds s=0
whereX = X4(d/dg*). But the curves (¢) lie in M, so that
dgh(r,
@ (qA(t, 9. M) 0 (4)
at
and differentiating with respect towe obtain
dg4 ad;  gA(t,s) dD;
q (t,S)__|_ q-(t S)——O, 5)

ds  dgA ds  9gA

where the dot means derivative with respeat tBrom (3) and (5) we deduce th&thas to
satisfy the following equation:

0P; 0P;
AZTE A i .

along the curvé. Notice that in fact the derivative;ds meaningful along a curve.
We define the functional by

J 1 C%(x,y) - R,

1
CI—)/ L(¢()) dt.
0



130 M. de Leon et al./Journal of Geometry and Physics 35 (2000) 126-144

If ¢ € C3(x,y) andX e T.C?(x,y), a direct computation using integration by parts
shows that (see [27])

YraL  d /oL A
dj(c)(X)zfo <aq_A_E<acTA>>X dr.

2.1. Unconstrained systems

In this caseM = TQ, and thens*((TM)%) = 0. The Hamilton principle states that a
curvec € C%(x, y) is a motion of the Lagrangian system definedbif and only if ¢ is a
critical point of 7, i.e., d7(¢)(X) = 0 for all X € T.C2(x, y) which in turn is equivalent
to the condition

YraL  d /oL A
/o(aq—A‘a(aTA» dr=0

for all values ofX 4. Therefore, we have

YraL  d /oL s
fy G i () ) xtar=o

for all functions f defined along:. In particular, we can take
Fe oL d /oL XA
“\9gA  dr \9gA ’
and we deduce that
8L _d E XA=0
g4 dr \9g4

forall X4. The converse is obvious. Henessatisfies @7 (¢)(X) = Oforall X e T,.C?(x, y)
if and only if we have

d /oL oL
—— |- — = 0, 1<A< n,
dr \ 944 dgA

i.e., c satisfies the Euler-Lagrange equations.
2.2. Non-holonomic mechanics

The Holder principle [2] states that a curfies C2(x, y) is a motion if and only if it
satisfies @7 (¢)(X) = 0forall X € V;, i.e.,

ool  d /oL
— —— (=) )x%dr =0
/0 (an dr (aq/*)) '

for all X4 satisfying Eq. (1). Since Eq. (1) is linear, we deduce that

LroL  d /oL
— (=) )X =
[, G (g ) pctar=o
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for all functions f alongc. As above, if we take

fo oL d (3L A
“\9gA  dr \agA ’

we deduce that is a motion if and only if

(-3 (2
for all X4 satisfying Eq. (1), which is just the statement of D’Alembert’s principle. If we
denote byFr?h the annihilator of the space

Foh = (X4 | X4 satisfiesl)),
then it is locally generated by the constraint forces, say

Tl = (5*(dD))).
Therefore, the 1-formd(L) = ((IL/dq*) — (d/dt)(AL/3g*)) dg* is in FY,, i.e.,

d /oL aL 0D
(=) - = - 1< A<n, (8)
dr \ 964 dg4 0g4

for some Lagrange multipliepst, ... , A”. Conversely, iS (L) € J—'r?h alongé, thenc is a

motion for the non-holonomic problem.

Next, we will discuss the principle of virtual work.

Principle of virtual workThe work done by the forces of constraint is zero on motions
allowed by the constraints.

This statement cannot be derived from the non-holonomic equations of motion. In-
deed, the principle of virtual work states that the work performed by the constraint force
(A (d®;/044)) dg” (which is obtained after the determination of the Lagrange multipliers)
is zero, i.e.,
0D,
laqf;qA
Therefore, if the Liouville vector field\ is tangent to the constraint submanifold, i.e.,

Ajm € TM, our system will satisfy the principle of virtual work. Whenis tangent tof we
will say that the constraints are homogeneous. Clearly, a linear constraint is homogeneous.

A =0.

2.3. Vakonomic mechanics

In vakonomic mechanics, a motion is a cudves C2(x, y) such that @7 (&)(X) = 0
forall X e T:C2(x, y). Using the Lagrange multipliers theorem in an infinite dimensional
context we deduce (see [2,27]) thiats a motion if and only if there exist functions
AL, ..., A" such that

d /oL dL L9 (9% dd; drl 9, 1< A< ©)
=) - = - _ - - —— <A<n.
dr \og4 ) ag4 dr \ag4/) dg*) dr ag*
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Indeed, we have to use the natural pairing
~ 1 ~
(o, X) f (o, X) dr,
0

wherew is a 1-form onT'2Q alongto; : T20Q — TQandX e T:C2(x, y).
It should be noticed that Eq. (9) can be written as

0d;

(BL)a = —A (8D;) 4 + (dr ) PR

1<A<n. (20)

An alternative approach to vakonomic mechanics is the following. We can prove that a
curveé = (g4 (1)) in C2(x, y) is a solution of the vakonomic equations if and only if there
exist local functionsi!, ... , A on TQ such that(r) = (¢ (¢), A!(¢)) is an extremal for
the extended Lagrangian

L=L+ M,

i.e., it satisfies the Euler-Lagrange equations

d /oL oL
——)]—-——>+=0 1<A
dr (36}*‘) BqA =A=n

(see [2,27] for detalils).

3. Unconstrained mechanics: a geometrical approach

Let us recall the symplectic formulation for unconstrained mechanics (see [26]).

Using § and A we construct the Poincaré—Cartan 1-faemn = S*(dL), the Poincaré—
Cartan 2-formw; = —day, and the energy functioB; = A(L) — L associated withL.
As we know,w is symplectic if and only ifL is regular. In such a case, the symplectic
geometry allows us to derive the equations of motion in a geometrical way. Indeed, the
equation

ixwL = dEL (11)

has a unique solutiofiz,, which is the Hamiltonian vector field g, ; 'z, is usually called
the Euler—Lagrange vector field. Denotethy: T(TQ) — T*(TQ) andfiy : T*(TQ) —
T (TQ) the musical isomorphisms defined by, i.e.,b; (Y) = iyw;, andf;, = bzl. In
local coordinates we have

0 9pa 0pm 5. 0PA .p
b () = (224 _0PBY 4B OPA 4.8
L(w) (an an) 7T 58

0 aﬁB B
b — ) = =228 gy B,
L(w) agA 1

wherepa = (dL/3¢4), 1 < A < n, are the generalized momenta.



M. de Leon et al./Journal of Geometry and Physics 35 (2000) 126-144 133

ThereforeI'; is a second order differential equation (SODE, for short),$.@’;) = A.
So, we have

d d
r, = - A A i . ’
L=4"5.% +£&%(q q)—an
which implies that the solutions df; (i.e., the projections of its integral curves o)
are the solutions of the Euler-Lagrange equations

d /oL oL
SN2 o 1<a<n
dr \ 964 dg4

If we contract Eq. (11) by, we have
0=TL(EL),

which proves that the energy is a conserved quantity.

4. Non-holonomic mechanics: a geometrical approach

Assume thaf. is subjected to a constraint submanifaltiof TQ locally defined by the
equations®; (¢4, ¢%) = 0,1 < i < m. We denote byFn, the vector bundle ovei
defined by prescribing its annihilator 18 ((TM)%), i.e., F§, = $*((TM)?). Notice that
bL(Fr#]) = Fr?h, where L is used to denote the complement with respect to the symplectic
formwy,.

Consider the following set of equations:

ixop, —dEL € FS, X eTM. (12)

Henceforth, we will assume that the following conditions are fulfilled (see [36,37]):
1. codimM = rankFr?h (admissibility conditioly
2. TMN F, = 0 (compatibility conditioi.
The admissibility condition simply states that the 1-fofi§(d®;)} are linearly indepen-
dent (see Section 2). The meaning of the compatibility condition will become clear below.
If X is a solution of Eq. (12) then it is a SODE. Moreovex;(f) = (¢ (r)) is a solution
of X we have that it satisfies the non-holonomic equations (8). Thus, Eq. (12) are the
geometrical version of (8).
A solution of Eq. (12) will be of the fornk = I';, + A/ Z;, whereZ; = 7 (S*(d®;)).
In order to determine the Lagrange multipliefswe need to use the tangency condition
X (®;) =0, for alli. Thus, we get

0=X(®)) =TL(®)) + 1 Z(®)).

Therefore, we obtain a system of linear equations. If the ma#jx®;)) is regular the
system has a unique solution. This happens, for instance, if the Hessian malriis of
positive or negative definite (see [21,24]).
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If (Z;(®))) is regular then we have
A= =C'"T(®)), (13)

where(Cl) is the inverse matrix ofZ;(®;)). In [21,24] it was proved that the regularity of
these local matrices is equivalent to the compatibility condition. By a simple counting of
dimensions we obtain a Withney sum decomposition

TTQum =TM® Fii

with complementary projecto : T(TQy — TMandQ : T(TQu — F,#] such that
I'r.m = P(TL) is the constrained dynamics (see [7,21,23,24]). We explicitly obtain

Tpm=PTL) =T —CITL(®)Z;. (14)

Remark 4.1. If L is a Lagrangian of mechanical typeayL = T — V, where T is the
kinetic energy derived from a Riemannian metric on Q and V is a potential ertbagyL
is always compatible with any constraint submanifold

Remark 4.2. It should be noted that the determination of the Lagrange multipliers im-
plies the knowledge of the dynamics as well as the knowledge of the constraint force
M (@®;/3¢) dg.

Assume that the non-holonomic systém M) is compatible and I€t;, 5, be the solution
of the equations of motion (12). If we contract the first equation in Eq. (12) by, we
obtain

. 0D;
T m(EL) =2 —4%,
5 an

sincel'; u is a SODE. Therefore, we have the following result.

Theorem 4.3.If the constraint submanifold M is homogeneous then the energy is
conserved

5. Vakonomic mechanics: a geometrical approach

In this section we consider the vakonomic case.

Consider the projectionrn)hz_ll(M) : rz‘ll(M) — M, wherery; : T2Q0 — TQis the

canonical bundle projection. We denote By the real vector space defined by prescribing
its annihilator consists of the 1-forms

Wi + (dra)s o) |25, A" e C(TQ),
where

a; =dr(S*dd;)) —dd;, 1<i<m.
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In local coordinates we obtain

0\ 0D I
i=dr [ — ) — —= ) d¢?, S*(d®;) = — dg?.
= (o (551) = Ggn ) 90" 5"000 = e

In fact, «; is just the 1-formy; = —8®; onT2Q.

The above local expressions show that theRgtconsists of semibasic 1-forms along
the canonical projectio(nl)‘fl(M) : r{ll(M) — M.

Notice thatF,k is a global object. Indeed, define an operator from 1-form3@rinto
1-forms onT?Q by

’C - dTSO‘< - fékl,

i.e., if e is a 1-form onTQ thenK(a) = dr (S*(a)) — 75« is a 1-form on72Q. Now, a
simple computation shows that

FS = K(TM)9).
Consider the following set of equations
ixop —dEL € FS, X eTM. (15)

Let us say some words about the meaning of Eq. (X5% a vector field along»1, i.e.,
X (z) € Tryy()(TQ), for anyz € rgll(M). Thus,ixw; — dE is a 1-form alongro;.

If X is a solution of Eq. (15) then it is a SODE, since the elemenﬁﬁrare semiba-
sic 1-forms. Moreover, it:(r) = (¢*(¢)) is a solution ofX we have that it satisfies the
vakonomic equation (9). Thus, Eq. (15) are the geometrical version of (9).

Any solution of Eq. (15) will be of the fornX = I'; + A'U; + (drA/)Z;, whereU; =
iz (o;) andZ; = g7 (S*(d®;)). Now, using the tangency condition, we get

0=X(®;) =TL(D;)+ A Ui(P;) + (drr) Zi (D).

Let X be a solution of Eq. (15), hence it is a SODE. A curve) = (¢4 (1)) in Q is a
solution of X if and only if

dg? . d2g4 g .p . OA
W=<1A, W=XA(qB,qB,qB,/\’,E), (16)

whereX = ¢4(8/39™) + X“(q, ¢, 4, \', A1)(8/9¢*). Eq. (16) are in general implicit
differential equations.

Now, assume that, as in the precedent section, the m@yx;)) is regular. Then we
have

dril = —ClUp(@ Ak = T (@), 17

where(C) is the inverse matrix ofZ; (®;)). As for non-holonomic mechanics, the geo-
metrical characterization of the regularity of the local matricgég®;)) is the condition

FnNTM=0.
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Eq. (17) is a differential equation involving the Lagrange multipliers. We thus have to give
initial conditions for them in order to solve Egs. (16) and (17). Note the difference with
respect to the non-holonomic case, in which one obtains the Lagrange multipliers by an
algebraic procedure.

Coming back to Eq. (16), if the associated non-holonomic system is compatible we can
implement them as follows:

dg” _ 4 d%g” _ x4 <qB LT %)
dt 9 dt2 - 9 9 9 9 dt 9
dal

= —C"U(@ Ak = T (@)).

Assume thafX is a solution of Eq. (15). If we contract the first equation in Eq. (15) by
X we obtain

—X(EL) = Ma;(X) + (drA)S*(dd;) (X).

Taking into account thaX is a SODE we have

D, 0D, D,
—X(Ep)=Mdr | — — AN — dr (A —
(Er) T(an>q anq +dr( )anCI

=3 dr (500 ) 4%+ Goni ) S

since
AP, 0P
dg4 g4
Therefore, we deduce that

9D,
—X(Ep) =df [ A —2¢4 ).
( L) T( anq )

=0.

Then, we have proved the following result.

Theorem 5.1. The energy of the vakonomic systevh, L) is a conserved quantity if and
only if the work done by the “reaction non-holonomic forcesta®; /d¢4) dg is a con-
stant of the motion

Remark 5.2. We can compare with the result for non-holonomic mechanics. If the con-
straint submanifold M is homogenegtisen the energ¥ ;. is a conserved quantity for both
mechanical systemsay non-holonomic and vakonomic

Therefore, the following could be considered as a principle of virtual work for vakonomic
mechanics:

Principle of virtual work for vakonomic mechanithe work done by any non-holonomic
force is constant along the motions allowed by the constraints.
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6. An example: a skate on an inclined plane

Consider a skate on an inclined planevith Cartesian coordinatas y. We assume that
the y-axis is horizontal, while the-axis is directed downward (see [2]). Denote(By y)
the coordinates of the point of contact of the skate wittand letp be the angle measured
from thex-axis. The Lagrangian function is

L=3G2+32+¢%) +x

with an appropriate choice of unities. The system is also subjected to the constraint
® = xsing — y cose.

A direct computation shows that

r 8+ 0 ¢ 8
_x— _ —_ _
L ax y ¢

6.1. Non-holonomic equations of motion
From (13) we deduce that= x¢$ cosg + y¢ sing + sing, and then (14) implies that

X _xai + yi +¢—¢ + (1 — sing (¢ (x cosp + y sing) + sm¢>))—

+C0S¢p (¢ (x COSP + y sing) + sin¢)8—y,.

In other words, a motioiix (z), y(z), ¢ (¢)) satisfies the following system of second order
differential equations:

¥ =1— sing(¢(x cosp + y sing) + sing),
¥ =cosp(¢(i cosp + ysing) +sing), ¢

which can be explicitly integrated (see [2]).

07

6.2. Vakonomic equations of motion

In this case, (17) yields
A = ¢(x cosp + y sing) + sing. (18)

Therefore, a solution has the following form:

0 0
X=k—t i +¢£ +(1— A cosg — Asm«ﬁ)—

+(—rpsing + i cos¢)a—y, + A(xcosp + y sin¢)£,

wherea is given by (18).
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Hence, a motionix (), y(t), ¢ (¢)) satisfies the following system of second order differ-
ential equations:

¥=1— r¢ cosp — ising, j = —A¢ Sing + i cose,
¢ = 1(x cosg + y sing), A = $(x cosp + y sing) + sing.

Remark 6.1. Notice that in both cases the energy is conserved since the constraints are
linear in the velocities

7. A unified geometrical approach

The purpose of this section is to describe a general geometrical setting which includes
non-holonomic and vakonomic mechanics as particular cases.
LetL : TQ — R be aregular Lagrangian function, amtla submanifold of codimension
m of TQ.
Let FO be a set of semibasic 1-forms along the projec(iqa)ltgll(M) : rz‘ll(M) — M,
and denote by its annihilator. In other words, for eaghe 720 suchthay = 21(z) € M,
F, is a subset of,(TQ). Therefore, ify € F°, we havey = ya(¢?, 4%, ¢%)dg?.
Consider the following system of equations:

inL — dEL € FO, X eTM. (19)

One can imagine that the Lagrangiars subjected to the forces given B and some
constraints given by/.
A solution X of Eq. (19), if it exists, has to be of the form

X=T,+7Y,

whereY = #;(y), andy € F°. Now, we impose the second equation in Eq. (19) (the
tangency condition) and we get

0=X(®;) =TL(P)) +Y(P)).

Adirect computation shows that the solutions of a soluliaf Eq. (19) satisfy the following
equations of motion:

d /oL oL _
dr \9gA )~ aga ~ T
wherey = y, dg4.

In order to recover the non-holonomic and vakonomic cases, we only need to taRe as
either the natural lift o%, to 720 or FS.

8. Caplygin vakonomic systems: reduction of the vakonomic equations

We will consider a Lagrangian function subjected to constraints given by a connection.
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Suppose thaf is a principalG-bundle over a manifold@ with projectionp : Q — 0,
and letI" be a principal connection ip : 0 — Q. The Lagrangiarl. : TQ — R is
supposed to b&-invariant and in addition it is subjected to the constraints given by the
horizontal distributior#{ of ", i.e., the allowable motions have to be horizontal curves with
respect to that connection. Thus, the constraint submanioiljust the total space of the
vector bundle — Q, withTQ = H & Vp, whereVp denotes the vertical subbundle with
respect to the projection. We denote byh : TQ — H the horizontal projector. We will
assume that the resultant non-holonomic system is compatible in the sense of Section 4.

Take bundle coordinateég®) = (¢, ¢'),1<a<n—m,1<i <m,n =dimQ. The
horizontal distribution is locally spanned by the local vector fields

Hy = (2 2 T A)a
a— age _3qa a\d 3qi’

whereY™ stands for the horizontal lift t@ of a vector fieldy on @, andl', = T, (¢, ¢/)
are the Christoffel components Bf Thus, we obtain a local basis of vector fields@n

a
Ha»vi:a_qi .

Its dual basis of 1-forms is
{na = dg®, ni =T} dg" +dg'},
and the constraints are
@ =Tyq" +4'.
We deduce that
Foo=spanini},  Fo={ai +dr(Hms),
wherea; = (5®;)4 dg”. A direct computation shows that

i

) ari 4
o = |:dT(F;) - aq'jqb} dg“ — #Clb dg’.

The curvature of is the tensor field of type (1,2) of given byR = %[h, h]. Since

0 0 .0 0
h = - F;—., h —> = O,
ag“ agq? aq’ aq’

we obtain
R ad 0\ Ri 0
dg’ dq®) abaqi’

with
.9t ard 9T! 9T
i _ a b J b J a
Ran= 540 ~ aqe TTaggi ~Thggi-
q q q q
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As we know,I" is flat if and only if the curvature identically vanishes and, in this case,
the constrained system is holonomic.
SinceL is G-invariant one can define a Lagrangian functich: 7Q — R given by

L*(Y) = L((¥™),)

foranyY e T;Q, whereg is an arbitrary point in the fiber ovér. In local coordinates we
have

L*(q% 4" = L(¢". 4", 4", ~Tq").
SinceL* does not depend afi we deduce that

9L 9L T} .,

— = 20
aq! g’ 9q* 1 (20)

The vakonomic equations fdr are the following:

d /oL oL _ . d(ri) ary ., i
dr \9g7) " aga ~ dr o @ pgqad @

J
d(OLN AL _ 0% 0 ji
dr \ 94* 9q" 9q"

After some calculations, and using (20) we obtain that

d (9L*\ _oL* _ (i LY ppi
dr \8q¢) ~ 9ge ~ agi )1 e
where the Lagrange multipliers satisfy Eq. (17).

The term(aL/aq'i)qu;b was intrinsically defined in [24] as follows. Define a 1-form
ar.r onTQ by putting

(ar.r)u(U) = —(ar)x (X)

foranyU e T,(T Q), for anyu e T; 0, whereX e T,(TQ) is a tangent vector which
projects onto the tangent vectar(U) = R((uf),, (TrQ(U))(f) € 1,0, p(@) =g, and
x € M with 7¢(x) = ¢. In local coordinates, we get

oL -b pi a
opr = (8_q’q Rab) dg“.

Therefore;,  encodes the curvature of the connection.
Let us now examine the term'qu;b. Using the same notations as above we have a
linear mapping

Yu i Tu(T Q) — Vyp,

whereV, p denotes the vector subspacé@p@ consisting of the vertical vectors with respect
to p. From now on we will assume that the Lie groGpis abelian. In this case, we have
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a natural identificatiorV, o = g which induces another one between the corresponding
dual spacesV;p = g*. Therefore, the transpose mappingtocan be understood as a
linear mappingy,* : g* — T, (T Q). Then we can define a real vector spacgon T Q

by prescribing its annihilator to be Ipr*. A direct computation proves thaf;?k is locally
generated by the 1-formg, ¢” dg°.

Since G is abelian, we have thdt) is G-invariant, from which deduce that all the
coefficients involved in Eq. (17) ai@-invariant. Therefore, we could look f@r-invariant
Lagrange multipliers. We also remark thatiifis G-invariant then g2 is so also, where
now the action of5 on T2 is the natural prolongation. Thus, one could consider a family
1! of Lagrange multipliers satisfying the differential equation

dril = —C'U (@ )k — O'TL (@), (21)

where the bar over a term means that we are considering its projectioff 6ntdhen the
lifts of A’ to TQ would satisfy Eq. (17). Conversely, eaGhinvariant solution of Eq. (17)
projects onto a solution of Eq. (21).

Now, take a Lagrangian system with Lagrangian functioand external forcer, r.
Consider the following motion equation:

iywrpx —dEp« —apr € Fz?k (22)

onTQ.
The above discussion can be summarized as follows.

Theorem 8.1. If G is abelian then the vakonomiéaplygin systeniL, I') is equivalent to

the system defined by the Lagrangighand external forcer;, r + B, with 8 € ﬁfk, plus

the differential equationf21). This means that the solutions of both systems are related by
projection and lifting

Indeed, ifY is a solution of Eq. (22) with Lagrange multipliex§then its horizontal lift
Y# to TQis a solution of Eq. (15) with Lagrange multipliex§ = 1’ o Tp. Conversely, if
X is aG-invariant solution of Eq. (15) then its projectidip (X) is a solution of Eq. (22).

Remark 8.2. We have developed a reduction procedure which works as follows, \Wist
solve Eq(21)and obtain the Lagrange multipliesd. Next we solve the reduced dynamics
Y, and finally we lift Y to TQ by using the tangent connecfidn in the principal bundle
TQ — T Q (se€[11] for tangent prolongations of principal connections

8.1. An example: the rolling disk

Consider arolling disk of radiuR and mas#: constrained to remain vertical on a plane.
We introduce coordinateg, y, 61, 62) in the configuration manifol@ = R? x ST x 1,
wherex, y are the Cartesian coordinates of the center of nasthe angle between the
tangent of the disk at the point of contact and the axasd6; is the angle given by a fixed
diameter and the vertical.
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The system is described by a Lagrangian
L = 3m(® + 3% + 3167 + 31263,
wherel; and/, are the moments of inertia, and the constraints
®1 = % — R COSO1, ®p = y — Rb, Sinby.
The vakonomic equations of motion are

mi=—iY,  my=—i% 1161 = AY02R sinfy — A26oR cosby,
(I + MR, = —A191 R sinby + A261R cosy,

with
: R2m6; sinf, cosd R2mb1 cof 0 L
jlo S MOLSTIPIEOL, . L 132 + R0, sindy,
I> + R%m I> + R?m
. R%mby sinf 6 R%m64 sindy cosh .
e mo1 l)}-}- m = 122 Rn916-2 coso;.
I+ R?m I+ R2m

Next, we will apply the reduction method discussed above.

R? x ST x $1is a principalR?-bundle overT? = s x §T with projectionp : R? x
T2 — T2, p(x, y, 61, 62) = (A1, 62). A principal connectior” is defined by prescribing its
horizontal distribution to be given by

H° = span{dx — R cosf df, dy — R sinéy doy}.

So(L,T) is aCaplygin system.
The Christoffel components are

r{=ry=0, 'y = —Rcosty, I') = —Rsing;
with the obvious notations. Therefore, the reduced Lagrangian is
L*(01, 02, 61, 62) = 11,67 + (I + mR)é2.
Since the curvature df is given by
i, =—R3;=—Rsinb1,  Rj,=—Rj; = Rcosoy,

the other components being zero, we deducedhat identically vanishes.
A long but straightforward computation shows that the reduced vakonomic equations of
motion are

161 = XY62R sinfy — A%62R cosby,
(I + MR, = —1191R sinby + A261R cosy,

with
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:1  R%mA1sinf1costr-;  R?mb1cos 0y

A 22 + Rmo16, sinéy,
I + R2m L+ RZm T RMa2sing
-2 R2m6ySir 01 -,  R%m6y sindy coshy - .
A =— m 1A.1+ m 1 1)»2 — Rn9102 cosH.
I + R?m I+ R2m
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